This article was downloaded by: [University of Haifa Library]

On: 13 August 2012, At: 20:29 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl20

Preparation and properties of graphite hexafluoroarsenates c x a s f 6 --preparation of stage-2 c 28 a s f 6 by the reaction of stage-1 c 14 a s f 6 with graphite

Fujio Okino ^a , Shinji Kawasaki ^a & Hidekazu Touhara ^a

Version of record first published: 18 Oct 2010

To cite this article: Fujio Okino, Shinji Kawasaki & Hidekazu Touhara (2002): Preparation and properties of graphite hexafluoroarsenates c x a s f 6 --preparation of stage-2 c 28 a s f 6 by the reaction of stage-1 c 14 a s f 6 with graphite, Molecular Crystals and Liquid Crystals, 387:1, 185-189

To link to this article: http://dx.doi.org/10.1080/10587250215237

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan,

^a Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda, 386-8567, Japan

sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

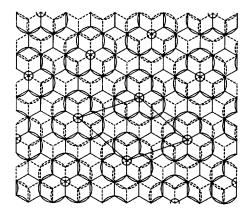
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst., Vol. 387, pp. [409]/185–[413]/189 Copyright © 2002 Taylor & Francis 1058-725X/02 \$12.00 + .00

DOI: 10.1080/10587250290113763

PREPARATION AND PROPERTIES OF GRAPHITE HEXAFLUOROARSENATES $C_x AsF_6$ —PREPARATION OF STAGE-2 $C_{28} AsF_6$ BY THE REACTION OF STAGE-1 $C_{14} AsF_6$ WITH GRAPHITE

Fujio Okino, Shinji Kawasaki, and Hidekazu Touhara Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan


Following the reaction of graphite with O_2AsF_6 to produce a stage-1 graphite intercalation compound $C_{14}AsF_6$, a stage-2 $C_{28}AsF_6$ was obtained by the reaction of the stage-1 $C_{14}AsF_6$ with graphite at room temperature. This solid-phase reaction of $C_{14}AsF_6$ with graphite proceeds relatively fast and the reaction is completed within 24h when an effective mixing is applied to the solid reactants.

Keywords: graphite intercalation compounds; reaction; XRD

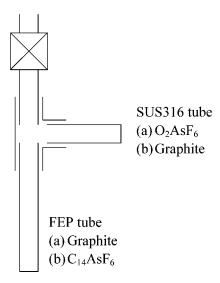
INTRODUCTION

Graphite hexafluoroarsenates $C_x AsF_6$ [1–4] are graphite intercalation compounds (GICs), and are related to but different from $C_x AsF_5$ GICs [1,5] that are prepared by the reaction of graphite with AsF_5 . $C_x AsF_5$ GICs have drawn much attention particularly because of their high electrical conductivities [6,7]. $C_x AsF_6$ GICs were found to have unique structures [2,3,8,9] and adsorption properties [10] owing to the nestling of the octahedral AsF_6^- species in the graphite sheets. Nestled compounds have the formula $C_{14n}AsF_6$, where n is the stage number. The in-plane structure of nestled $C_{14n}AsF_6$ is shown in Figure 1 [2]. The XRD patterns of stage-2 nestled $C_{28}AsF_6$ and un-nestled $C_{25}AsF_6$ have shown fine-structured 10 bands arising from two different random stacking sequences [8,9]. In $C_{28}AsF_6$, carbon layers across the intercalate layer are staggered owing to the nestling of AsF_6^- , and the overall stacking sequence is expressed by AlBClAClBAlC..., where I denotes the intercalate layer. On the other hand,

This work was partly supported by the Research for the Future Program of the Japan Society for the Promotion of Science (JSPS RFTF96R11701).

FIGURE 1 In-plane $\sqrt{7} \times \sqrt{7}$ arrangement of AsF₆ for C₁₄AsF₆.

carbon layers across the intercalate layer in $C_{25}AsF_6$ are eclipsed and the stacking sequence is expressed by AlABIBAlACIC... In both cases, adjacent carbon layers without interleaved guest species are staggered. Stage-1 $C_{14}AsF_6$ was found to adsorb nitrogen up to the composition $C_{14n}AsF_6$.½ N_2 at 77 K owing to the low in-plane density of the guest species arising from the nestling of AsF_6^- [10].


 $C_{14n}AsF_6$ GICs are readily prepared by the reaction of graphite with O_2AsF_6 at room temperature according to Eq. (1). As this reaction proceeds very quickly [10], it was presumed that higher-stage $C_{14n}AsF_6$ GICs could be obtained by the reaction of lower-stage $C_{14m}AsF_6$ GICs with graphite (n > m) according to Eq. (2). In this paper, preparation of stage-2 $C_{28}AsF_6$ by the reaction of stage-1 $C_{14}AsF_6$ with graphite at room temperature is described.

$$14nC + O_2AsF_6 \rightarrow C_{14n}AsF_6 + O_2 \tag{1}$$

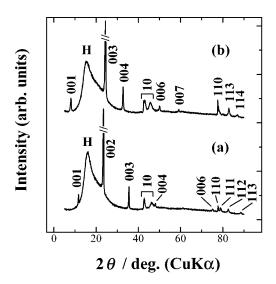
$$14(n-m)C + C_{14m}AsF_6 \rightarrow C_{14n}AsF_6$$
 (2)

EXPERIMENTAL

As F_5 was prepared by the reaction of fluorine with arsenic at 200°C. O_2AsF_6 was prepared by exposing a mixture of O_2 , F_2 and AsF_5 to UV light. A T-shaped reaction cell, shown in Figure 2, with branches of a valve, and FEP and SUS316 tubes (o.d. 10 mm) was used for the preparation of stage-1 $C_{14}AsF_6$ and stage-2 $C_{28}AsF_6$. For the preparation of stage-1 $C_{14}AsF_6$ [10], O_2AsF_6 and SP-1 graphite powder (Union Carbide) were weighed in the SUS316 and FEP tubes, respectively, and after assembling the T-shaped

FIGURE 2 Schematic diagram of the T-shaped cell. (a) for the reaction of 14C+ $O_2AsF_6 \rightarrow C_{14}AsF_6 + O_2$. (b) for the reaction of $14C + C_{14}AsF_6 \rightarrow C_{28}AsF_6$.

cell, O_2AsF_6 was transferred onto the graphite, and the mixture was shaken by hitting the end of the elastic FEP tube by the blades of a small electric fan. For the preparation of stage-2 $C_{28}AsF_6$, the SUS316 tube was filled with graphite and the FEP tube with $C_{14}AsF_6$. Sample compositions were determined by gravimetry. Powder X-ray diffraction (XRD) patterns were obtained on a Rigaku Rint 2200 using $CuK\alpha$ radiation in the Debye-Scherrer geometry. Pyrolytic graphite was used as the counter monochromator. Powder samples were loaded into a 0.7 mm diameter thin-walled quartz capillary in a dry box under an Ar atmosphere.


RESULTS AND DISCUSSION

The reactions for the preparation of stage-1 (Eq. (3)) and stage-2 (Eq. (4)) were run for 10 min and 24 h, respectively.

$$14C + O_2AsF_6 \rightarrow C_{14}AsF_6 + O_2$$
 (3)

$$14C + C_{14}AsF_6 \rightarrow C_{28}AsF_6$$
 (4)

The compositions of the prepared stage-1 and stage-2 GICs were $C_{13.7}AsF_6$ and $C_{27.4}AsF_6$, respectively. Their XRD patterns are given in Figure 3. The c-axis repeat-distances, I_c , are 0.76 and 1.09 nm for $C_{13.7}AsF_6$ and

FIGURE 3 XRD-patterns for (a) nestled stage-1 $C_{13.7}$ As F_6 made by the reaction of graphite with O_2 As F_6 , and (b) nestled stage-2 $C_{27.4}$ As F_6 made by the reaction of $C_{13.7}$ As F_6 with graphite.

 $\rm C_{27.4}AsF_6$, respectively. The XRD patterns show the typical features of those for nestled stage-1 and stage-2 $\rm C_{14n}AsF_6$ [2,8,9]: (i) The small I_c values of 0.76 and 1.09 nm, which corresponds to the sandwich thickness of ca. 0.42 nm, (ii) the low-angle halo designated by H arising from the 100 reflection of the $\sqrt{7}\times\sqrt{7}$ in-plane superlattice shown in Figure 1, and (iii) the fine-structured 10 bands, arising from random stacking sequences AlBICIAICIBIA... for the stage-1 $\rm C_{13.7}AsF_6$ and AlBCIACIBAIC... for the stage-2 $\rm C_{27.4}AsF_6$. The XRD pattern of the stage-2 $\rm C_{27.4}AsF_6$ made by the reaction of $\rm C_{13.7}AsF_6$ with graphite is essentially the same as that of the stage-2 $\rm C_{28}AsF_6$ obtained by the reaction of graphite with $\rm O_2AsF_6$ according to Eq. (5) [8,9].

$$28C + O_2AsF_6 \rightarrow C_{28}AsF_6 + O_2$$
 (5)

The results clearly indicate that a stage-2 $C_{28}AsF_6$ GIC was formed by the reaction of a stage-1 $C_{14}AsF_6$ GIC with graphite at room temperature according to Eq. (4). Although reaction (4) is a solid-phase reaction, it proceeds very easily at room temperature indicating a high mobility of AsF_6^- anions within the graphite gallery and across the crystallite interfaces.

The present reaction of $C_{14} As F_6$ with graphite was run for 24 h to insure the completion of the reaction. Our preliminary results on the rate of the

reactions via Eq. (2) indicate that this solid-phase reaction can be completed within an hour when an effective mixing is applied to the solid reactants. The results also indicated that higher-stage $C_x AsF_6$ GICs, with nestled or un-nestled AsF_6^- , can be obtained by the reaction of lower-stage $C_x AsF_6$ GICs with graphite.

CONCLUSIONS

A stage-2 C_{28} AsF₆ GIC was formed by the reaction of a stage-1 C_{14} AsF₆ GIC with graphite at room temperature. This solid-solid reaction of C_{14} AsF₆ with graphite proceeds relatively fast; the reaction is completed within 24 h. In general, higher-stage C_x AsF₆ GICs, with nestled or un-nestled AsF₆⁻, can be obtained by the reaction of lower-stage C_y AsF₆ GICs with graphite.

REFERENCES

- [1] McCarron, E. M. & Bartlett, N. (1980). J. Chem. Soc., Chem. Commun., 404.
- [2] Okino, F. & Bartlett, N. (1993). J. Chem. Soc., Dalton Trans., 2081.
- [3] Okino, F., Sugiura, Y., Touhara, H., & Simon, A. (1993). J. Chem. Soc., Chem. Commun., 562.
- [4] Okino, F. (2000). J. Fluorine Chem., 105, 239.
- [5] Lin Chun-Hsu, Selig, H., Rabinovits, M., Agranat, I., & Sarig, S. (1975). Inorg. Nucl. Chem. Lett., 11, 601.
- [6] Falardeau, E. R., Foley, G. M. T., Zeller, C., & Vogel, F. L. (1977). J. Chem. Soc., Chem. Commun., 389.
- [7] Foley, G. M. T., Zeller, C., Falardeau, E. R., & Vogel, F. L. (1977). Solid State Commun., 24, 371.
- [8] Okino, F., Kawasaki, S., & Touhara, H. (2000). Carbon, 38, 1882.
- [9] Okino, F., Kawasaki, S., & Touhara, H. (2002). Synthetic Metals, 125, 161.
- [10] Okino, F., Kawasaki, S., & Touhara, H. (2000). Mol. Crsyt. and Liq. Cryst., 340, 49.